Pseudo-Marginal Slice Sampling

نویسندگان

  • Iain Murray
  • Matthew M. Graham
چکیده

Markov chain Monte Carlo (MCMC) methods asymptotically sample from complex probability distributions. The pseudo-marginal MCMC framework only requires an unbiased estimator of the unnormalized probability distribution function to construct a Markov chain. However, the resulting chains are harder to tune to a target distribution than conventional MCMC, and the types of updates available are limited. We describe a general way to clamp and update the random numbers used in a pseudo-marginal method’s unbiased estimator. In this framework we can use slice sampling and other adaptive methods. We obtain more robust Markov chains, which often mix more quickly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-GEE Approach to Analyzing Longitudinal Surveys under Imputation for Missing Responses

This paper presents a pseudo-GEE approach to the analysis of longitudinal surveys when the response variable contains missing values. A cycle-specific marginal hotdeck imputation method is proposed to fill in the missing responses and the pseudo-GEE method described in Carrillo et al. (2009) is applied to the imputed data set. Consistency of the resulting pseudo-GEE estimators is established un...

متن کامل

Initial experience with a cardiac multi-contrast real-time cine prototype integrating sparse sampling and iterative reconstruction

Methods All patients were submitted to a conventional cardiac magnetic resonance study (Magnetom Aera, Siemens AG Healthcare, Germany) that included shortand long-axis steady-state free-precession (SSFP) segmented cine measurements (spatial resol.: 1.5x1.5 mm; slice thickness: 7 mm; temporal resol.: 40 ms; 7 heart beats (HB)/slice), modified Look-Locker inversion recovery post-contrast T1 mappi...

متن کامل

Marginal Structural Cox Models with Case-Cohort Sampling

A common objective of biomedical cohort studies is assessing the effect of a time-varying treatment or exposure on a survival time. In the presence of time-varying confounders, marginal structural models fit using inverse probability weighting can be employed to obtain a consistent and asymptotically normal estimator of the causal effect of a time-varying treatment. This article considers estim...

متن کامل

Random Sampling from Pseudo-Ranked B+ Trees

In the past, two basic approaches for sampling f5-om B+ trees have been suggested: sampling from the ranked trees and acceptance/rejection sampling i?om non-ranked trees. The first approach requires the entire root-to-leaf path to be updated with each insertion and deletion. The second has no update overhead, but incurs a high rejection rate for the compressed-key B+ trees commonly used in prac...

متن کامل

Sampling from Dirichlet process mixture models with unknown concentration parameter: mixing issues in large data implementations

We consider the question of Markov chain Monte Carlo sampling from a general stick-breaking Dirichlet process mixture model, with concentration parameter [Formula: see text]. This paper introduces a Gibbs sampling algorithm that combines the slice sampling approach of Walker (Communications in Statistics - Simulation and Computation 36:45-54, 2007) and the retrospective sampling approach of Pap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016